题目内容
在△ABC中,已知向量
=(cos18°,cos72°),
=(2cos63°,2cos27°),则∠BAC=( )
AB |
AC |
A.450 | B.1350 | C.810 | D.990 |
∵
•
=cos18°•2cos63°+cos72°•2cos27°
=2(cos18°sin27°+sin18°cos27°)
=2sin(18°+27°)=2sin45°=
,
|
|=
=
=1,
|
|=
=
=2,
故cos∠BAC=
=
,又0°≤∠BAC≤180°,
所以∠BAC=45°
故选A
AB |
AC |
=2(cos18°sin27°+sin18°cos27°)
=2sin(18°+27°)=2sin45°=
2 |
|
AB |
cos218°+cos272° |
cos218°+sin218° |
|
AC |
4cos263°+4cos227° |
4(sin227°+cos227°) |
故cos∠BAC=
| ||||
|
|
| ||
2 |
所以∠BAC=45°
故选A
练习册系列答案
相关题目