题目内容

【题目】函数f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,则实数a的取值范围是(
A.(﹣∞,2]
B.
C.
D.[2,+∞)

【答案】C
【解析】解:∵函数f(x)=(1﹣x)|x﹣3|=
其函数图象如下图所示:
由函数图象可得:
函数f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,
当x≥3时,f(x)=﹣x2+4x﹣3=﹣1,解得x=2+
当x<3时,f(x)=x2﹣4x+3=﹣1,解得x=2,
实数a须满足2≤a≤2+
故实数a的集合是[2,2+ ].
故选:C.

【考点精析】掌握函数的最值及其几何意义是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网