题目内容
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位:t)和年利润 (单位:千元)的影响.对近8年的年宣传费和年销售量 (i=1,2,…,8)数据作了初步处理,得到右面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的年利润与的关系为.根据(2)的结果回答下列问题:
①年宣传费=49时,年销售量及年利润的预报值是多少?
②年宣传费为何值时,年利润的预报值最大?
附:对于一组数据, …,,其回归直线的斜率和截距的最小二乘估计分别为
【答案】(1)y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2)=100.6+68.(3)①年销售量576.6,年利润预报值66.32.②年宣传费为46.24千元时,年利润的预报值最大.
【解析】(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.
(Ⅱ)令w=,先建立y关于w的线性回归方程.由于
所以y关于w的线性回归方程为=100.6+68w,
因此y关于x的回归方程为=100.6+68.
(Ⅲ) (ⅰ)由(Ⅱ)知,当x=49时,年销售量y的预报值
=100.6+68=576.6,
年利润z的预报值=576.6×0.2-49=66.32.
(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值
=0.2(100.6+68)-x=-x+13.6+20.12,
∴当=即x=46.24时取最大值.
故宣传费用为46.24千元时,年利润的预报值最大.
【题目】据四川省民政厅报告,2013年6月29日以来,四川省中东部出现强降雨天气过程,局地出现大暴雨.暴雨洪涝灾害已造成遂宁、德阳、绵阳等12市34县(市、区)244万人受灾,共造成直接经济损失85502.41万元.适逢暑假,小王在某小区调查了50户居民由于洪灾造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图(如图).
(1)若先从损失超过6000元的居民中随机抽出2户进行调查,求这2户不在同一小组的概率;(2)洪灾过后小区居委会号召小区居民为洪灾重灾区捐款,小王调查的50户居民的捐款情况如表,在表格空白处填写正确的数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:临界值表参考公式:K2=.