题目内容
【题目】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,则a+3b的值为 .
【答案】-10
【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)= ,
∴f( )=f(﹣ )=1﹣ a,f( )= ;又 = ,
∴1﹣ a= ①
又f(﹣1)=f(1),
∴2a+b=0,②
由①②解得a=2,b=﹣4;
∴a+3b=﹣10.
故答案为:﹣10.
由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f( )=f(﹣ )=1﹣a=f( )= ;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;
附:回归方程,其中.
【题目】有一位同学家里开了一个小卖部,他为了研究气温对热茶销售的影响,经过统计,得到一个卖出热茶杯数与当天气温的对比表如下:
气温x/℃ | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
热茶销售杯数y/杯 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(1)画出散点图;
(2)你能从散点图中发现气温与热茶的销售杯数之间关系的一般规律吗?
(3)如果近似成线性关系的话,请画出一条直线来近似地表示这种线性关系;
(4)试求出回归直线方程;
(5)利用(4)的回归方程,若某天的气温是2 ℃,预测这一天卖出热茶的杯数.