题目内容
7.求证:f(x)=$\sqrt{{x}^{2}+1}$-x在R上单调递减.分析 根据单调性的定义,证明函数f(x)在R上是单调递减函数即可.
解答 证明:任取x1、x2∈R,且x1<x2;
则f(x1)-f(x2)=($\sqrt{{{x}_{1}}^{2}+1}$-x1)-($\sqrt{{{x}_{2}}^{2}+1}$-x2)
=($\sqrt{{{x}_{1}}^{2}+1}$-$\sqrt{{{x}_{2}}^{2}+1}$)+(x2-x1)
=$\frac{{{(x}_{1}}^{2}+1)-{{(x}_{2}}^{2}-1)}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$+(x2-x1)
=$\frac{{(x}_{1}{+x}_{2}){(x}_{1}{-x}_{2})}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$+(x2-x1)
=(x2-x1)(1-$\frac{{x}_{1}{+x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$);
∵x1<x2,∴x2-x1>0,
又x1+x2≤|x1|+|x2|<$\sqrt{{{x}_{1}}^{2}+1}$+$\sqrt{{{x}_{2}}^{2}+1}$,
∴$\frac{{x}_{1}{+x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$<1,
∴1-$\frac{{x}_{1}{+x}_{2}}{\sqrt{{{x}_{1}}^{2}+1}+\sqrt{{{x}_{2}}^{2}+1}}$>0;
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)在R上是减函数.
点评 本题考查了利用单调性的定义证明函数单调性问题,其基本步骤是取值、作差,判正负,下结论.