题目内容
7.下列积分正确的是( )A. | ∫${\;}_{0}^{1}$ldx=0 | B. | ${∫}_{0}^{1}$exdx=e | C. | ${∫}_{1}^{3}$xdx=2 | D. | ${∫}_{1}^{e}$$\frac{1}{x}$dx=1 |
分析 根据定积分的计算法则计算并判断即可.
解答 解:对于A,∫${\;}_{0}^{1}$ldx=x${|}_{0}^{1}$=1,故A错误,
对于B,${∫}_{0}^{1}$exdx=ex${|}_{0}^{1}$=e-1,故B错误,
对于C,${∫}_{1}^{3}$xdx=$\frac{1}{2}{x}^{2}{|}_{1}^{3}$=$\frac{1}{2}$(8-1)=$\frac{7}{2}$,故C错误,
对于D,${∫}_{1}^{e}$$\frac{1}{x}$dx=lnx|${\;}_{1}^{e}$=1,故D正确,
故选:D.
点评 本题考查了定积分的计算,属于基础题.
练习册系列答案
相关题目
18.函数$y=sin(x+\frac{π}{4})+sin(x-\frac{π}{4})$是( )
A. | 偶函数且最大值为2 | B. | 奇函数且最大值为2 | ||
C. | 奇函数且最大值为$\sqrt{2}$ | D. | 偶函数且最大值为$\sqrt{2}$ |
15.如果角θ的终边经过点(-$\sqrt{3}$,1),那么cosθ的值是( )
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
2.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
(1)求利润额y对销售额x的回归直线方程;
(2)当销售额为4(千万元)时,估计利润额的大小.
提示:$\stackrel{∧}{b}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
商店名称 | A | B | C | D | E |
销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
利润额y(千万元) | 2 | 3 | 3 | 4 | 5 |
(2)当销售额为4(千万元)时,估计利润额的大小.
提示:$\stackrel{∧}{b}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})^{2}}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
12.等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1,则a等于( )
A. | 1 | B. | -1 | C. | $-\frac{1}{3}$ | D. | $\frac{5}{11}$ |
16.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y>m2-2m恒成立,则实数m的取值范围是( )
A. | (2,4) | B. | (1,2) | C. | (-2,1) | D. | (-2,4) |