ÌâÄ¿ÄÚÈÝ
17£®º¯Êýf£¨x£©=-2sin2x+sin2x+1£¬¸ø³öÏÂÁÐ4¸öÃüÌ⣺¢ÙÔÚÇø¼ä$[{\frac{¦Ð}{8}£¬\frac{5¦Ð}{8}}]$ÉÏÊǼõº¯Êý£»
¢ÚÖ±Ïßx=$\frac{¦Ð}{8}$ÊǺ¯ÊýͼÏóµÄÒ»Ìõ¶Ô³ÆÖ᣻
¢Ûº¯Êýf£¨x£©µÄͼÏó¿ÉÓɺ¯Êýy=$\sqrt{2}$sin2xµÄͼÏóÏò×óƽÒÆ$\frac{¦Ð}{4}$¶øµÃµ½£»
¢ÜÈô$x¡Ê[{0£¬\frac{¦Ð}{2}}]$£¬Ôòf£¨x£©µÄÖµÓòÊÇ$[{0£¬\sqrt{2}}]$£®
ÆäÖÐÕýÈ·ÃüÌâÐòºÅÊÇ¢Ù¢Ú£®
·ÖÎö ÀûÓñ¶½Ç¹«Ê½½áºÏ¸¨Öú½Ç¹«Ê½»¯»ý£¬È»ºó½áºÏy=Asin£¨¦Øx+¦Õ£©Ðͺ¯ÊýµÄͼÏóºÍÐÔÖÊÖðÒ»ÅжÏËĸöÃüÌâµÃ´ð°¸£®
½â´ð ½â£ºÓÉf£¨x£©=-2sin2x+sin2x+1
=sin2x+cos2x=$\sqrt{2}sin£¨2x+\frac{¦Ð}{4}£©$£®
¶ÔÓÚ¢Ù£¬ÓÉ$\frac{¦Ð}{8}¡Üx¡Ü\frac{5¦Ð}{8}$£¬µÃ$\frac{¦Ð}{4}¡Ü2x¡Ü\frac{5¦Ð}{4}$£¬
¡à$\frac{¦Ð}{2}¡Ü2x+\frac{¦Ð}{4}¡Ü\frac{3¦Ð}{2}$£¬Ôòf£¨x£©ÔÚÇø¼ä$[{\frac{¦Ð}{8}£¬\frac{5¦Ð}{8}}]$ÉÏÊǼõº¯Êý£¬¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬ÓÉx=$\frac{¦Ð}{8}$£¬µÃ$2x+\frac{¦Ð}{4}=\frac{¦Ð}{2}$£¬¡àÖ±Ïßx=$\frac{¦Ð}{8}$ÊǺ¯ÊýͼÏóµÄÒ»Ìõ¶Ô³ÆÖᣬ¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬º¯Êýy=$\sqrt{2}$sin2xµÄͼÏóÏò×óƽÒÆ$\frac{¦Ð}{4}$£¬µÃµ½f£¨x£©=$\sqrt{2}sin2£¨x+\frac{¦Ð}{4}£©=\sqrt{2}sin£¨2x+\frac{¦Ð}{2}£©=\sqrt{2}cos2x$£¬
¡àÃüÌâ¢Û´íÎó£»
¶ÔÓڢܣ¬ÓÉ$x¡Ê[{0£¬\frac{¦Ð}{2}}]$£¬µÃ$2x+\frac{¦Ð}{4}¡Ê$[$\frac{¦Ð}{4}£¬\frac{5¦Ð}{4}$]£¬Ôòf£¨x£©µÄÖµÓòÊÇ[-1£¬$\sqrt{2}$]£¬ÃüÌâ¢Ü´íÎó£®
¡àÕýÈ·µÄÃüÌâÊÇ¢Ù¢Ú£®
¹Ê´ð°¸Îª£º¢Ù¢Ú£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁËÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊôÖеµÌ⣮
A£® | [0£¬15] | B£® | [5£¬15] | C£® | [5£¬21] | D£® | £¨5£¬21£© |
A£® | $\overrightarrow{EF}$=$\frac{1}{2}£¨\overrightarrow a+\overrightarrow b+\overrightarrow c+\overrightarrow d£©$ | B£® | $\overrightarrow{EF}$=$\frac{1}{2}£¨\overrightarrow a-\overrightarrow b+\overrightarrow c-\overrightarrow d£©$ | C£® | $\overrightarrow{EF}$=$\frac{1}{2}£¨-\overrightarrow a-\overrightarrow b+\overrightarrow c+\overrightarrow d£©$ | D£® | $\overrightarrow{EF}$=$\frac{1}{2}£¨\overrightarrow a+\overrightarrow b-\overrightarrow c-\overrightarrow d£©$ |
A£® | -2009 | B£® | 2009 | C£® | -2010 | D£® | 2010 |
A£® | ¡Ò${\;}_{0}^{1}$ldx=0 | B£® | ${¡Ò}_{0}^{1}$exdx=e | C£® | ${¡Ò}_{1}^{3}$xdx=2 | D£® | ${¡Ò}_{1}^{e}$$\frac{1}{x}$dx=1 |