题目内容
设数列的前项和为,对任意满足,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
(Ⅰ);(Ⅱ);
解析
已知是正数组成的数列,,且点在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,,求证:.
三个不同的数成等差数列,其和为6,如果将此三个数重新排列,他们又可以成等比数列,求这个等差数列。
若数列的前项和为,对任意正整数都有,记. (1)求,的值;(2)求数列的通项公式;(3)若求证:对任意.
已知数列中,,前和(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.
数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.
设数列满足:点均在直线上.(I)证明数列为等比数列,并求出数列的通项公式;(II)若,求数列的前项和.
设各项均为正数的数列的前项和为,满足且构成等比数列.(1) 证明:;(2) 求数列的通项公式;(3) 证明:对一切正整数,有.
已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*.(Ⅰ)求Sn和an;(Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.