题目内容
19.(文科)已知数列{an}满足:a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*.(Ⅰ)求a3,a4,a5,a6的值及数列{an}的通项公式;
(Ⅱ)设bn=a2n-1•a2n,求数列{bn}的前n项和Sn.
分析 (Ⅰ)通过n=1,2,3,4,计算可得a3,a4,a5,a6的值,讨论n为奇数和偶数,由等差数列和等比数列的通项即可得到数列{an}的通项公式;
(Ⅱ)求出bn=(2n-1)•($\frac{1}{2}$)n,运用错位相减法,即可得到数列{bn}的前n项和Sn.
解答 解:(Ⅰ)a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,
则2a3-2a1-4=0,解得a3=3,
4a4-2a2=0,解得a4=$\frac{1}{4}$,
2a5-2a3-4=0,解得a5=5,
4a6-2a4=0,解得a6=$\frac{1}{8}$,
当n为奇数时,an+2=an+2,an=n;
当n为偶数时,an+2=$\frac{1}{2}$an,an=$(\frac{1}{2})^{\frac{n}{2}}$.
即有an=$\left\{\begin{array}{l}{n,n为奇数}\\{(\frac{1}{2})^{\frac{n}{2}},n为偶数}\end{array}\right.$;
(Ⅱ)由于2n-1为奇数,则a2n-1=2n-1,
由于2n为偶数,则a2n=($\frac{1}{2}$)n.
因此,bn=a2n-1•a2n=(2n-1)•($\frac{1}{2}$)n.
Sn=1•$\frac{1}{2}$+3•($\frac{1}{2}$)2+5•($\frac{1}{2}$)3+…+(2n-3)•($\frac{1}{2}$)n-1+(2n-1)•($\frac{1}{2}$)n,
$\frac{1}{2}$Sn=1•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+5•($\frac{1}{2}$)4+…+(2n-3)•($\frac{1}{2}$)n+(2n-1)•($\frac{1}{2}$)n+1,
两式相减得$\frac{1}{2}$Sn=1•$\frac{1}{2}$+2[($\frac{1}{2}$)2+($\frac{1}{2}$)3+($\frac{1}{2}$)4+…+($\frac{1}{2}$)n]-(2n-1)•($\frac{1}{2}$)n+1,
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-1)•($\frac{1}{2}$)n+1,
化简可得,Sn=3-$\frac{2n+3}{{2}^{n}}$.
点评 本题考查等比数列和等差数列的通项和求和公式的运用,同时考查错位相减法求数列的和,考查运算能力,属于中档题.
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 2+$\sqrt{2}$ | D. | 2$\sqrt{2}$ |
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
A. | [1,+∞) | B. | (0,1] | C. | [3,+∞) | D. | [1,3] |