题目内容
下列命题中,错误的是
A.
命题“若x2-2x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”
B.
已知x,y∈R,则成立的充要条件
C.
对命题p:x∈R,使得x2+x+1<0则p:x∈R,则x2+x+1≥0
D.
已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假
设A(x1,y1),B(x2,y2)是椭圆>b>0)上的两点,向量,且m·n=0,椭圆离心率,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆方程;
(Ⅱ)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求k的值;
(Ⅲ)△AOB的面积是否为定值?若是,求出该定值;若不是,说明理由.
如图,直三棱柱ABC-A1B1C1中,AA1=AB=2,BC=1,D为AC中点,若规定主视方向为垂直于平面ACC1A1的方向,则可求得三棱柱左视图的面积为;
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求三棱锥A-A1BD的体积.
在极坐标系中,若等边三角形ABC(顶点A,B,C按顺时针方向排列)的顶点A,B的极坐标分别为,则顶点C的极坐标为________;
已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在a0∈(a,b),使得(x0)=.试用这个结论证明:若-1<x1<x2,函数g(x)=(x-x1)+f(x1),则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,λ3,…,λn,满足λ1+λ2+λ3+…+λn=1,求证:当x≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,x3,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn)
过双曲线的右焦点F和虚轴端点B(0,6)作一条直线,若右顶点A到直线FB的距离等于,则双曲线的离心率e=
2
或2
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,-),其部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知横坐标分别为-1,1,5的三点M,N,P都在函数f(x)的图象上,求sin∠MNP的值.
已知长方体ABCD-A1B1C1D1的外接球的表面积为16π,则该长方体的表面积的最大值为
32
36
48
64
已知α∈(,π),sinα=,则tan(α+)等于
7
-
-7