题目内容
【题目】已知函数,其最小正周期为.
(1)求的表达式;
(2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,若关于的方程在区间上有且只有一个实数解,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用函数的最小正周期可求得的值,由此可得出函数的解析式;
(2)利用三角函数图象变换可得,由可计算出的取值范围,由可得,可得出直线与函数在区间上的图象有且只有一个交点,数形结合可求得实数的取值范围.
(1)
,
又因为函数的最小正周期,所以,所以,
所以;
(2)将函数的图象向右平移个单位长度后,得到的图象.再将所得图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,所以,
当时,,
令,可得,令,可知直线与函数在区间上的图象有且只有一个交点,如下图所示:
由图象可知,当或时,
直线与函数在区间上的图象有且只有一个交点.
所以实数的取值范围是.
练习册系列答案
相关题目
【题目】某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
产品类别 | A | B | C |
产品数量(件) | 1 300 | ||
样本容量(件) | 130 |
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是( )
A.80B.800C.90D.900