题目内容
【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.
(1)求A;
(2)若a=,b=2,求△ABC的面积.
【答案】(1);(2)
【解析】
(1)由向量的平行关系可以得到,再由正弦定理可以解出答案。
(2)由(1)的答案,再根据余弦定理可以求得,根据面积公式算出答案。
(1)因为,所以asinB-bcosA=0,
由正弦定理,得sinAsinB-sinBcosA=0,
又sinB≠0,从而tanA=,由于0<A<π,所以A=.
(2)由余弦定理,得a2=b2+c2-2bccosA,而a=,b=2,A=,
所以7=4+c2-2c,即c2-2c-3=0,因为c>0,所以c=3,
故△ABC的面积为S=bcsinA=.
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;
(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月7日,4月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?
参考公式: ,
参考数据:
【题目】以下表格记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以表示.
甲组 | 9 | 9 | 11 | 11 |
乙组 | 8 | 9 | 10 |
(1)如果,求乙组同学植树棵数的平均数和方差;
(2)如果,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.