题目内容

8.若直线y=kx+1与圆x2+y2=1相交与P,Q两点,且此圆被分成的两段弧长之比为1:2,则k的值为(  )
A.$-\sqrt{3}$或$\sqrt{3}$B.$\sqrt{3}$C.$-\sqrt{2}$或$\sqrt{2}$D.$\sqrt{2}$

分析 根据直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),求出圆心到直线的距离;再根据点到直线的距离公式即可求出k的值.

解答 解:因为直线y=kx+1与圆x2+y2=1相交于P、Q两点,且此圆被分成的两段弧长之比为1:2,所以∠POQ=120°(其中O为原点),如图
可得∠OPE=30°;OE=OPsin30°=$\frac{1}{2}$,
即圆心O(0,0)到直线y=kx+1的距离d=$\frac{1}{2}$=$\frac{|0-0+1|}{\sqrt{{k}^{2}+1}}$,
所以k=$±\sqrt{3}$.
故选:A.

点评 本题考查直线和圆的位置关系,点到直线的距离公式,考查计算能力,求出圆心(0,0)到直线的距离是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网