ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{3}^{x}\\;£¨x¡Ý0£©}\\{lo{g}_{3}£¨-x£©\\;£¨x£¼0£©}\end{array}\right.$£®Èôº¯Êýg£¨x£©=f2£¨x£©+f£¨x£©+t£¬£¨t¡ÊR£©£¬ÔòÏÂÁÐ˵·¨Öв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | µ±t£¼-2ʱ£¬Ôòº¯Êýg£¨x£©ÓÐËĸöÁãµã | B£® | µ±t=-2ʱ£¬Ôòº¯Êýg£¨x£©ÓÐÈý¸öÁãµã | ||
C£® | µ±t=$\frac{1}{4}$ʱ£¬Ôòº¯Êýg£¨x£©ÓÐÒ»¸öÁãµã | D£® | µ±-2£¼t£¼$\frac{1}{4}$ʱ£¬Ôòº¯Êýg£¨x£©ÓÐÁ½¸öÁãµã |
·ÖÎö ×÷³öº¯Êýf£¨x£©µÄͼÏó£¬Áîm=f£¨x£©£¬¿ÉµÃm¡Ý1ʱ£¬m=f£¨x£©ÓÐÁ½¸ù£¬m£¼1ʱ£¬m=f£¨x£©ÓÐÒ»¸ù£¬¸ù¾Ý¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ·ÖÎötÈ¡²»Í¬ÖµÊ±£¬g£¨x£©=m2+m+t¸ùµÄ¸öÊý¼°·ÖÃæÇé¿ö£¬×ÛºÏÌÖÂۿɵã®
½â´ð ½â£ºº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{3}^{x}\\;£¨x¡Ý0£©}\\{lo{g}_{3}£¨-x£©\\;£¨x£¼0£©}\end{array}\right.$µÄͼÏóÈçͼËùʾ£¬
Áîm=f£¨x£©£¬m¡Ý1ʱ£¬m=f£¨x£©ÓÐÁ½¸ù£¬m£¼1ʱ£¬m=f£¨x£©ÓÐÒ»¸ù£¬
Èôt£¼-2£¬Ôòg£¨x£©=m2+m+t=0ÓÐÁ½¸ö¸ù£¬Ò»¸ö´óÓÚ1£¬Ò»¸öСÓÚ1
´Ëʱ£¬g£¨x£©=0ÓÐÈý¸ö¸ù£¬¹ÊA´íÎó£»
Èôt=-2£¬Ôòg£¨x£©=f2£¨x£©+f£¨x£©-2=£¨m+2£©£¨m-1£©=0
´Ëʱm=-2£¬m=1£¬´Ëʱg£¨x£©=0ÓÐÈý¸ö¸ù£¬
¼´g£¨x£©ÓÐÈý¸öÁãµã£¬¹ÊBÕýÈ·£»
Èôt=$\frac{1}{4}$£¬Ôòg£¨x£©=f2£¨x£©+f£¨x£©+$\frac{1}{4}$=£¨m+$\frac{1}{2}$£©2=0
´Ëʱm=-$\frac{1}{2}$£¬ÓÉÉÏͼ¿ÉµÃ£¬´Ëʱº¯Êým=0ÓÐÒ»¸ö¸ù£¬
¼´g£¨x£©ÓÐÒ»¸öÁãµã£¬¹ÊCÕýÈ·£»
Èô-2£¼t£¼$\frac{1}{4}$£¬Ôòg£¨x£©=m2+m+t=0ÓÐÁ½¸ö¸ù£¬µ«¾ùСÓÚ1
´Ëʱ£¬g£¨x£©=0ÓÐÁ½¸ö¸ù£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºA
µãÆÀ ±¾Ì⿼²é¸ùµÄ´æÔÚÐÔ¼°¸ùµÄ¸öÊýÅжϣ¬º¯ÊýÐνáºÏ²¢ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊÊǽâ´ðµÄ¹Ø¼ü£¬ÊôÖеµÌ⣮
A£® | $\frac{3}{4}$ | B£® | -$\frac{3}{4}$ | C£® | $\frac{\sqrt{3}}{2}$ | D£® | -$\frac{\sqrt{3}}{2}$ |