题目内容

13.已知x,y为正实数,且x+2y=3,则$\sqrt{2x(y+\frac{1}{2})}$ 的最大值是2.

分析 由已知条件利用基本不等式得到2x(y+$\frac{1}{2}$)=x(2y+1)≤$(\frac{x+2y+1}{2})^{2}$=4,由此能求出$\sqrt{2x(y+\frac{1}{2})}$ 的最大值.

解答 解:∵x,y为正实数,且x+2y=3,
∴2x(y+$\frac{1}{2}$)=x(2y+1)≤$(\frac{x+2y+1}{2})^{2}$=4,
当且仅当x=2y+1时对等号,
∴$\sqrt{2x(y+\frac{1}{2})}$=$\sqrt{x(2y+1)}$≤2.
∴$\sqrt{2x(y+\frac{1}{2})}$ 的最大值为2.
故答案为:2.

点评 本题考查正数的最大值的求法,是基础题,解题时要认真审题,注意均值不等式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网