题目内容
【题目】2012年“双节”期间,高速公路车辆较多某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速分成六段:,,,,后得到如图的频率分布直方图.
某调查公司在采样中,用到的是什么抽样方法?
求这40辆小型车辆车速的众数和中位数的估计值.
若从车速在的车辆中任抽取2辆,求车速在的车辆至少有一辆的概率.
【答案】(1)系统抽样;(2)众数的估计值等于,中位数的估计值为;(3)。
【解析】
由抽样特点确定为系统抽样;(2)选出直方图中最高的矩形求出其底边的中点即为众数;求出从左边开始小矩形的面积和为0.5对应的横轴即为中位数;(3)从图中可知,车速在[60,65)的车辆数和车速在[65,70)的车辆数.从车速在(60,70)的车辆中任抽取2辆,设车速在[60,65)的车辆设为a,b,车速在[65,70)的车辆设为c,d,e,f,列出各自的基本事件数,从而求出相应的概率即可.
由题意知这个抽样是按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,是一个具有相同间隔的抽样,并且总体的个数比较多,这是一个系统抽样.
故调查公司在采样中,用到的是系统抽样。
众数的估计值为最高的矩形的中点,即众数的估计值等于.
设图中虚线所对应的车速为x,则中位数的估计值为:
,
解得,即中位数的估计值为。
从图中可知,车速在的车辆数为:辆,
车速在的车辆数为:辆。
设车速在的车辆设为a,b,车速在的车辆设为c,d,e,f,
则所有基本事件有:,,,,,,,,,,,,,,共15种。
其中车速在的车辆至少有一辆的事件有:,,,,,,,,,,,,,共14种
所以,车速在的车辆至少有一辆的概率为
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程中系数计算公式分别为:,,其中、为样本均值.
【题目】为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
高校 | 相关人员 | 抽取人数 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(1)求,;
(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.