题目内容
3.三角形三边长分别是6、8、10,那么它最短边上的高为8.分析 判断10为最长边,6为最短边,利用余弦定理求出cosα的值,确定出α的度数为90°,即可确定出最短边上的高.
解答 解:∵三角形三边长分别是6、8、10,设10所对的角为α,
∴cosα=$\frac{{6}^{2}+{8}^{2}-1{0}^{2}}{2×6×8}$=0,
∴α=90°,即三角形为直角三角形,
则直角三角形最短边6上的高为8.
故答案为:8.
点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目
13.若定义运算a⊕b=$\left\{\begin{array}{l}{a,a<b}\\{b,a≥b}\end{array}\right.$,则函数f(x)=log2x⊕log${\;}_{\frac{1}{2}}$x的值域是 ( )
A. | (-∞,-1] | B. | (-∞,0] | C. | [0,+∞) | D. | [1,+∞) |
8.已知定义在R上的函数f(x)满足①f(2-x)=f(x);②f(x+2)=f(x-2);③x1,x2∈[1,3]时,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则f(2014),f(2015),f(2016)大小关系为( )
A. | f(2014)>f(2015)>f(2016) | B. | f(2016)>f(2014)>f(2015) | ||
C. | f(2016)=f(2014)>f(2015) | D. | f(2014)>f(2015)=f(2016) |
15.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的离心率为$\frac{1}{2}$,则双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的渐近线方程为( )
A. | $y=±\frac{{\sqrt{3}}}{2}x$ | B. | $y=±\frac{{2\sqrt{3}}}{3}x$ | C. | $y=±\frac{1}{2}x$ | D. | y=±x |
12.已知双曲线的渐近线方程为y=±$\frac{1}{2}$x,且经过点(4,1),则双曲线的标准方程为( )
A. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1 | B. | $\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1 | C. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{3}$=1 |