题目内容

14.若a2+b2=1,x2+y2=4,则ax+by的最大值为2.

分析 先根据柯西不等式可知(a2+b2)(x2+y2)≥(ax+by)2,进而的求得(ax+by)2的最大值,进而求得ax+by的最大值.

解答 解:因为a2+b2=1,x2+y2=4,
由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得
4≥(ax+by)2,当且仅当ay=bx时取等号,
所以ax+by的最大值为2.
故答案为:2.

点评 本题主要考查了柯西不等式在最值问题中的应用.解题的关键是利用了柯西不等式,达到解决问题的目的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网