题目内容
8.5本不同的数,全部分给四个学生,每个学生至少1本,不同分法的种数为240.分析 由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.
解答 解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,
这一个元素和其他的三个元素在四个位置全排列共有A44,
∴分法种数为C52•A44=240.
故答案为:240.
点评 本题考查排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.
练习册系列答案
相关题目
18.设F1,F2为椭圆$\frac{x^2}{4}+{y^2}$=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则$\frac{{|{P{F_2}}|}}{{|{P{F_1}}|}}$的值为( )
A. | $\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{7}$ | D. | $\frac{1}{9}$ |
16.设集合M={x|2x2-y2=1},N={y|y=x2},则M∩N=( )
A. | {(1,1)} | B. | {(-1,1),(1,1)} | C. | $[{\frac{1}{2},+∞})$ | D. | $[{\frac{{\sqrt{2}}}{2},+∞})$ |
13.若(2x-1)2015=a0+a1x+a2x2+…+a2015x2015(x∈R),则$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2015}}}}{{{2^{2015}}{a_1}}}$的值为( )
A. | $\frac{1}{2015}$ | B. | -$\frac{1}{2015}$ | C. | $\frac{1}{4030}$ | D. | -$\frac{1}{4030}$ |
20.知a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则数列{an}的通项为an=( )
A. | $\frac{1}{2n-1}$ | B. | 2n-1 | C. | $\frac{1}{3n-2}$ | D. | 3n-2 |
17.如图,在棱长为2的正方体ABCD-A1B1C1D1内(含正方体表面)任取一点M,则$\overrightarrow{A{A}_{1}}$•$\overrightarrow{AM}$≥1的概率是( )
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |