题目内容
如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=
.
(1)求证:BC⊥AC1;
(2)若D是AB的中点,求证:AC1∥平面CDB1.
3 |
5 |
(1)求证:BC⊥AC1;
(2)若D是AB的中点,求证:AC1∥平面CDB1.
证明:(1)∵在△ABC中,AC=3,AB=5,
cos∠BAC=
,
∴BC2=AB2+AC2-2AB•AC•
cos∠BAC=25+9-2×5×3×
=16.
∴BC=4,∠ACB=90°,
∴BC⊥AC,
∵BC⊥CC1,AC∩CC1=C,
∴BC⊥平面ACC1A1,
∵AC1?平面ACC1A1,
∴BC⊥AC1.
(2)连接BC1交B1C于M,则M为BC1的中点,
连接DM,则DM∥AC1,
∵DM?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1.
cos∠BAC=
3 |
5 |
∴BC2=AB2+AC2-2AB•AC•
cos∠BAC=25+9-2×5×3×
3 |
5 |
∴BC=4,∠ACB=90°,
∴BC⊥AC,
∵BC⊥CC1,AC∩CC1=C,
∴BC⊥平面ACC1A1,
∵AC1?平面ACC1A1,
∴BC⊥AC1.
(2)连接BC1交B1C于M,则M为BC1的中点,
连接DM,则DM∥AC1,
∵DM?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1.
练习册系列答案
相关题目