题目内容
【题目】设 , , 均为非零向量,已知命题p: = 是 = 的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是( )
A.p∧q
B.p∨q
C.(¬p)∧(¬q)
D.p∨(¬q)
【答案】B
【解析】解:若 = 时,则 = 一定成立,则充分性成立,若 = ,当 = 时,则 = 不一定成立,必要性不成立.∴为充分不必要条件,故p为假命题; |x|>1等价于x>1或x<﹣1,
所以充分性成立,必要性不成立,故q为真命题.
故选B.
【考点精析】关于本题考查的复合命题的真假,需要了解“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能得出正确答案.
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
一年级 | 二年级 | 三年级 | |
男同学 | |||
女同学 |
(1)用表中字母列举出所有可能的结果;
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
【题目】某地小吃“全羊汤”2008年被中国中医学会营养膳食协会评为“中华名吃”,2010年12月被纳入市级非物质文化遗产名录,打造地方名片.当初向各地作广告推广,对销售收益产生额积极的影响.某年度在若干地区各投入4万元广告费用后,将各地该年度的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图,计算图中各小长方形的宽度;
(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值;(以各组区间中点值代表改组的取值)
(3)又在某一地区测的另外一些数据,并整理的得到下表:
广告投入(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益(单位:百万元) | 2 | 3 | 2 | 7 |
请将(2)的结果填入空白栏,表中的数据之间存在线性相关关系.计算,并预测年度广告约投入多少万元时,年销售收益达到千万元?(结果精确达到0.1)
参考公式:.