题目内容

【题目】设 均为非零向量,已知命题p: = = 的必要不充分条件,命题q:x>1是|x|>1成立的充分不必要条件,则下列命题是真命题的是(
A.p∧q
B.p∨q
C.(¬p)∧(¬q)
D.p∨(¬q)

【答案】B
【解析】解:若 = 时,则 = 一定成立,则充分性成立,若 = ,当 = 时,则 = 不一定成立,必要性不成立.∴为充分不必要条件,故p为假命题; |x|>1等价于x>1或x<﹣1,
所以充分性成立,必要性不成立,故q为真命题.
故选B.
【考点精析】关于本题考查的复合命题的真假,需要了解“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网