题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且cosC=
(1)求B;
(2)设CM是角C的平分线,且CM=1,b=6,求cos∠BCM.

【答案】
(1)解:∵cosC= =

∴a2+b2﹣c2=2a2

∴a2+c2=b2,故B=90°


(2)解:cos∠BCM= =a,cos∠BCA= ,∠BCA=2∠BCM,

=2a2﹣1,即12a2﹣a﹣6=0,解得a= 或﹣ (舍)

∴cos∠BCM=


【解析】(1)由已知及余弦定理整理可求a2+c2=b2 , 由勾股定理可求B的值.(2)由已知可求cos∠BCM=a,cos∠BCA= ,利用二倍角的余弦函数公式可求12a2﹣a﹣6=0,解得a,从而可求cos∠BCM的值.
【考点精析】关于本题考查的余弦定理的定义,需要了解余弦定理:;;才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网