题目内容
【题目】为了解喜好体育运动是否与性别有关,某报记者随机采访50个路人,将调查情况进行整理后制成下表:
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 8 | 10 | 5 | 5 |
喜好人数 | 4 | 6 | 6 | 3 | 3 |
(1)在调查的结果中,喜好体育运动的女性有10人,不喜好体育运动的男性有5人,请将下面的2×2列联表补充完整,并判断能否在犯错误的概率不超过0.005的前提下认为喜好体育运动与性别有关?说明你的理由;
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不喜好体育运动的人数为X,求随机变量X的分布列和数学期望. 下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
【答案】
(1)解:根据频率分布表知,喜好体育运动的人数为30,则不喜好体育运动的人数为20,
填写2×2列联表如下:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
根据列联表中数据,计算
K2= = =3<7.879,
对照临界值知,在犯错误的概率不超过0.005的前提下,不能认为喜好体育运动与性别有关;
(2)解:从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,
记选中的4人中不喜好体育运动的人数为X,
依题意得X=0,1,2,3,
P(X=0)= = ,
P(X=1)= + = ,
P(X=2)= + = ,
P(X=3)= = ,
∴X的分布列是:
X | 0 | 1 | 2 | 3 |
P |
∴X的数学期望EX=0× +1× +2× +3× =
【解析】(1)根据频率分布表,计算喜好体育运动和不喜好体育运动的人数,填写列联表,计算K2,对照临界值得出结论;(2)根据题意知随机变量X的可能取值,计算对应的概率值,写出分布列,计算数学期望值.
【题目】某农场共有土地50亩,这些地可种西瓜、棉花、玉米.这些农作物每亩地所需劳力和预计产值如下表.若该农场有20名劳动力,应怎样计划才能使每亩地都能种上作物(玉米必种),所有劳动力都被安排工作(每名劳动力只能种植一种作物)且作物预计总产值达最高?
作物 | 劳力/亩 | 产值/亩 |
西瓜 | 1/2 | 0.6万元 |
棉花 | 1/3 | 0.5万元 |
玉米 | 1/4 | 0.3万元 |