题目内容
【题目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ∥ ,求 的值;
(2)已知函数f(x)=2( + ) ﹣2m2﹣1,若函数f(x)在[0, ]上有零点,求m的取值范围.
【答案】
(1)解: 时, ;
又 ;
∴3sinx+cosx=0;
∴cosx=﹣3sinx;
∴
(2)解: ﹣2m2﹣1
= 2m2﹣1
=
根据题意,方程 有解;
即m= 有解;
∵ ;
∴
∴ ;
∴m的取值范围为
【解析】(1)可得出向量 的坐标,根据 及平行向量的坐标关系即可得出cosx=3sinx,从而便可得出 的值;(2)可先求出 的坐标,然后进行向量坐标的数量积运算,并由二倍角的正余弦公式及两角和的正弦公式即可得到 ,从而得出 ,而可以求出sin(2x+ )在 的范围,从而可得出m的取值范围.
练习册系列答案
相关题目
【题目】某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在 30 天内日销售量(克)与时间(天)之间的函数关系如下表所示:
第天 | 5 | 15 | 20 | 30 |
销售量克 | 35 | 25 | 20 | 10 |
(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;
(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;
(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.
(注:日销售金额=每克的销售价格×日销售量)