题目内容

【题目】若二次函数f(x)=4x2-2(t-2)x-2t2-t+1在区间[-1,1]内至少存在一个值m,使得f(m)>0,则实数t的取值范围( )

A. B. C. D.

【答案】B

【解析】

函数f(x)的图象是开口向上的抛物线,故二次函数f(x)在区间[﹣1,1]内至少存在一个实数m,使得f(m)>0的否定为:对于区间[﹣1,1]内的任意一个x都有f(x)0,即f(﹣1),f(1)均小于等0,由此可以构造一个关于t的不等式组,解不等式组,找出其对立面即可求出实数t的取值范围.

二次函数f(x)在区间[﹣1,1]内至少存在一个实数m,使f(m)>0,

该结论的否定是:对于区间[﹣1,1]内的任意一个x都有f(x)≤0,

,求得t≤﹣3或t≥

二次函数在区间[﹣1,1]内至少存在一个实数m,使f(m)>0的实数t的取值范围是:(﹣3,),

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网