题目内容

【题目】参加衡水中学数学选修课的同学,对某公司的一种产品销量与价格进行统计,得到如下数据和散点图:

定价(元/

年销售

(参考数据:

(I)根据散点图判断,哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?

(II)根据(I)的判断结果有数据,建立关于的回归方程(方程中的系数均保留两位有效数字);

(III)定价为多少元/时,年利润的预报值最大?

附:对一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.

【答案】(I)由散点图可知,具有较强的线性相关性; (II); (III)定值为元/时,年利润的预报值最大.

【解析】试题分析:比较两个散点图可以发现具有较强的线性相关性,利用表中提供的的对应值计算,借助提后提供的现成数据再计算,得出,和,得出后再利用,有 ,得出 关于的回归方程,注意保留小数;表示出年利润,求导找出最值.

试题解析:

(I)由散点图可知,具有较强的线性相关性.

(II)由题得,

∴线性回归方程为

关于的回归方程为.

(III)设年利润为

求导,得

,解得.

由函数的单调性可知,当时,年利润的预报值最大,

∴定值为元/时,年利润的预报值最大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网