题目内容
【题目】已知等差数列和等比数列满足, , .
(1)求的通项公式;
(2)求和: .
【答案】(1);(2).
【解析】试题分析:(1)根据等差数列的, ,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项 ,公比 的方程组,解得、的值,求出数列的通项公式,然后利用等比数列求和公式求解即可.
试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
从而.
【题型】解答题
【结束】
18
【题目】已知命题:实数满足,其中;命题:方程表示双曲线.
(1)若,且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:
先由命题解得;命题得,
(1)当,得命题,再由为真,得真且真,即可求解的取值范围.
(2)由是的充分不必要条件,则是的充分必要条件,根据则 ,即可求解实数的取值范围.
试题解析:
命题:由题得,又,解得;
命题: ,解得.
(1)若,命题为真时, ,
当为真,则真且真,
∴解得的取值范围是.
(2)是的充分不必要条件,则是的充分必要条件,
设, ,则 ;
∴∴实数的取值范围是.
【题目】近几年,京津冀等地数城市指数“爆表”,尤其2015年污染最重.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是,其中, .