题目内容
【题目】为迎接今年6月6日的“全国爱眼日”,某高中学校学生会随机抽取16名学生,经校 医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右图,若视力测试结果不低于5.0,则称为“好视力”,
(1)写出这组数据的众数和中位数;
(2)求从这16人中随机选取3人,至少有2人是“好视力”的概率;
(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.
【答案】
(1)解:由题意,∵4.6和4.7都出现三次,
∴众数:4.6和4.7;中位数:4.75
(2)解:设Ai表示所取3人中有i个人是“好视力”,至多有2人是“好视力”记为事件A,
∴P(A)=P(A2)+P(A3)= =
(3)解:X的可能取值为0、1、2、3
P(X=0)= = ,P(X=1)= = ,P(X=2)= = ,P(X=3)= =
∴X的分布列为
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
∴EX=1× +2× +3× =0.75
【解析】(1)根据所给的茎叶图看出16个数据,找出众数和中位数,中位数需要按照从小到大的顺序排列得到结论.(2)由题意知本题是一个古典概型,至多有1人是“好视力”包括有一个人是好视力和有3个人是好视力,根据古典概型公式得到结果.(3)由于从该校任选3人,记ξ表示抽到“好视力”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.
【考点精析】关于本题考查的茎叶图和离散型随机变量及其分布列,需要了解茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.