题目内容
【题目】某单位需要从甲、乙两人中选拔一人参加新岗位培训,特别组织了5个专项的考试,成绩统计如下:
第一项 | 第二项 | 第三项 | 第四项 | 第五项 | |
甲的成绩 | 81 | 82 | 79 | 96 | 87 |
乙的成绩 | 94 | 76 | 80 | 90 | 85 |
(1)根据有关统计知识,回答问题:若从甲、乙2人中选出1人参加新岗位培训,你认为选谁合适,请说明理由;
(2)根据有关概率知识,解答以下问题:
从甲、乙两人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.
【答案】(1)甲(2)
【解析】分析:(1)先计算两人成绩的均值,在均值相同时计算方差;
(2)每人5个成绩,各抽一个可得25个基本事件(可列举),其中满足的有8个,从而可得概率.
详解:(1)甲的平均成绩为,
乙的平均成绩为,
故甲乙二人的平均水平一样.
甲的成绩方差,乙的成绩方差,
∴,故应派甲适合.
(2)从甲乙二人的成绩中各随机抽一个,设甲抽到的成绩为,乙抽到的成绩为,
则所有的有,,,,,,,,,,,,,,,,,,,,,,,,,共25个,
其中满足条件的有,,,,,,,共有8个,
所求事件的概率为.
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:
温度(单位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡数(单位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
经计算:,,,.
其中分别为试验数据中的温度和死亡株数,.
(1)与是否有较强的线性相关性? 请计算相关系数(精确到)说明.
(2)并求关于的回归方程(和都精确到);
(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据,,……,,
①线性相关系数,通常情况下当大于0.8时,认为两
个变量有很强的线性相关性.
②其回归直线的斜率和截距的最小二乘估计分别为:
;