题目内容
【题目】在实数集R上定义一种运算“*”,对于任意给定的a、b∈R,a*b为唯一确定的实数,且具有性质:
1)对任意a、b∈R,a*b=b*a;
2)对任意a、b∈R,a*0=a;
3)对任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.
关于函数f(x)=x* 的性质,有如下说法:
①在(0,+∞)上函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(﹣∞,﹣1),(1,+∞).
其中所有正确说法的个数为( )
A.0
B.1
C.2
D.3
【答案】C
【解析】解:①由新运算“*”的定义③令c=0,
则(a*b)*0=0*(ab)+(a*0)+(0*b)=ab+a+b,
即a*b=ab+a+b
∴f(x)=x* =1+x+ ,当x>0时,f(x)=x* =1+x+ ≥1+2 =1+2=3,
当且仅当x= ,即x=1时取等号,∴在(0,+∞)上函数f(x)的最小值为3;故①正确,
②函数的定义域为(﹣∞,0)∪(0,+∞),
∵f(1)=1+1+1=3,f(﹣1)=1﹣1﹣1=﹣1,
∴f(﹣1)≠﹣f(1)且f(﹣1)≠f(1),则函数f(x)为非奇非偶函数,故②错误,
③函数的f′(x)=1﹣ ,令f′(x)=0
则x=±1,
∵当x∈(﹣∞,﹣1)或(1,+∞)时,f′(x)>0
∴函数f(x)的单调递增区间为(﹣∞,﹣1)、(1,+∞).故③正确;
故正确的是①③,
故选:C
【题目】某单位需要从甲、乙两人中选拔一人参加新岗位培训,特别组织了5个专项的考试,成绩统计如下:
第一项 | 第二项 | 第三项 | 第四项 | 第五项 | |
甲的成绩 | 81 | 82 | 79 | 96 | 87 |
乙的成绩 | 94 | 76 | 80 | 90 | 85 |
(1)根据有关统计知识,回答问题:若从甲、乙2人中选出1人参加新岗位培训,你认为选谁合适,请说明理由;
(2)根据有关概率知识,解答以下问题:
从甲、乙两人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.