题目内容
【题目】如图,建立平面直角坐标系, 轴在地平面上, 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.
【答案】(1) 10千米.(2) 当不超过6千米时,炮弹可以击中目标
【解析】试题分析:(1)求炮的最大射程即求(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解
试题解析:(1)令y=0,得kx-(1+k2)x2=0,
由实际意义和题设条件知x>0,k>0,
故x==≤=10,当且仅当k=1时取等号.所以炮的最大射程为10千米.
(2)因为a>0,所以炮弹可击中目标
存在k>0,使3.2=ka-(1+k2)a2成立
关于k的方程a2k2-20ak+a2+64=0有正根
判别式Δ=(-20a)2-4a2(a2+64)≥0
a≤6.
所以当a不超过6(千米)时,可击中目标.
【题目】某便利店计划每天购进某品牌鲜奶若干件,便利店每销售一瓶鲜奶可获利元;若供大于求,剩余鲜奶全部退回,但每瓶鲜奶亏损元;若供不应求,则便利店可从外调剂,此时每瓶调剂品可获利元.
(1)若便利店一天购进鲜奶瓶,求当天的利润(单位:元)关于当天鲜奶需求量(单位:瓶,)的函数解析式;
(2)便利店记录了天该鲜奶的日需求量(单位:瓶,)整理得下表:
日需求量 | ||||||
频数 |
若便利店一天购进瓶该鲜奶,以天记录的各需求量的频率作为各需求量发生的概率,求当天利润在区间内的概率.
【题目】某单位需要从甲、乙两人中选拔一人参加新岗位培训,特别组织了5个专项的考试,成绩统计如下:
第一项 | 第二项 | 第三项 | 第四项 | 第五项 | |
甲的成绩 | 81 | 82 | 79 | 96 | 87 |
乙的成绩 | 94 | 76 | 80 | 90 | 85 |
(1)根据有关统计知识,回答问题:若从甲、乙2人中选出1人参加新岗位培训,你认为选谁合适,请说明理由;
(2)根据有关概率知识,解答以下问题:
从甲、乙两人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.