ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªµãBÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉ϶¥µã£¬F1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×óÓÒ½¹µã£¬Ö±ÏßBF1£¬BF2ÓëÍÖÔ²·Ö±ð½»ÓÚE£¬FÁ½µã£¬¡÷BEFΪµÈ±ßÈý½ÇÐΣ®£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©ÒÑÖªµã£¨1£¬$\frac{3}{2}$£©ÔÚÍÖÔ²CÉÏ£¬ÇÒÖ±Ïßl£ºy=kx+mÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÈôÖ±ÏßF1M£¬F2NµÄÇãб½Ç·Ö±ðΪ¦Á£¬¦Â£¬ÇÒ¦Á+¦Â=$\frac{¦Ð}{2}$£¬ÇóÖ¤£ºÖ±Ïßl¹ý¶¨µã£¬²¢Çó¸Ã¶¨µãµÄ×ø±ê£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÈý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬ÁÐʽÇó½âÀëÐÄÂÊ£®
£¨¢ò£©ÏÈÇóµÃÍÖÔ²·½³Ì£¬Ö±Ïßl£ºy=kx+mÓëÍÖÔ²CÁªÁ¢£¬µÃËùÒÔ£¨k2-1£©x1x2+£¨mk+1£©£¨x1+x2£©+m2-1=0£¬ÒÀÌõ¼þÇó½â£®
½â´ð ½â£º£¨¢ñ£©B£¨0£¬b£©F1£¨-c£¬0£©£¬F2£¨c£¬0£©£®
ÓÖ¡÷BEFΪµÈ±ßÈý½ÇÐΣ¬ËùÒÔ£¬¡÷BF1F2ΪµÈ±ßÈý½ÇÐΣ®
¡à2c=$\sqrt{{b}^{2}+{c}^{2}}$£¬¢ÙÓÖa2=b2+c2¢Ú
ÓÉ¢Ù¢Ú½âµÃ$e=\frac{c}{a}=\frac{1}{2}$
ÍÖÔ²CµÄÀëÐÄÂÊ$e=\frac{1}{2}$£®¡£¨3·Ö£©
£¨¢ò£©ÓÉÌâÒâÍÖÔ²·½³ÌΪ3x2+4y2=3a2£¬ÓÉÓڵ㣨1£¬$\frac{3}{2}$£©ÔÚÍÖÔ²CÉÏ£¬
Òò´Ëa2=4£¬b2=3£¬Òò´ËÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®¡£¨4·Ö£©
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+m}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨3+4k2£©x2+8mkx+4m2-12=0£®ÉèM£¨x1£¬y1£©£®N£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=\frac{-8km}{3+4{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{4{m}^{2}-12}{3+4{k}^{2}}$£¬ÓÉ$¦Á+¦Â=\frac{¦Ð}{2}$£¬µÃsin¦Á=cos¦Â£¬cos¦Á=sin¦Â£¬¡£¨7·Ö£©
Òò´Ëtan¦Átan¦Â=1£¬¼´${k}_{M{F}_{1}}{k}_{M{F}_{2}}=1$£¬Òò´Ë£¨kx1+m£©£¨kx2+m£©=£¨x1-1£©£¨x2-1£©£¬
ËùÒÔ£¨k2-1£©x1x2+£¨mk+1£©£¨x1+x2£©+m2-1=0£¬¡£¨9·Ö£©
Òò´Ë$£¨{k}^{2}-1£©\frac{4{m}^{2}-12}{3+4{k}^{2}}+£¨mk+\sqrt{3}£©£¨\frac{-8mk}{3+4{k}^{2}}£©$+m2-1=0£¬ÕûÀí£¬µÃ
m2+8mk+16k2-9=0£¬¼´£¨m+4k£©2=3£¬m=-4k¡À3£®¡£¨11·Ö£©
ÓÚÊÇÖ±Ïß·½³ÌΪy=k£¨x-4£©¡À3£¬Òò´ËÖ±Ïß¹ý¶¨µã£¨4£¬3£©»ò£¨4£¬-3£©£®¡£¨13·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²ÀëÐÄÂʵÄÇ󷨺ÍÖ±ÏߺÍԲ׶ÇúÏßµÄ×ÛºÏÓ¦Óã¬ÊôÓÚÖеµÌ⣬¸ß¿¼¾³£Éæ¼°£®
A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | $\sqrt{2}$+1 |
A£® | -4 | B£® | 3 | C£® | 3»ò-4 | D£® | ¡À4 |
A£® | x-y+2=0 | B£® | x+y+2=0 | C£® | x+y-2=0 | D£® | x-y-2=0 |
A£® | £¨-$\frac{3}{4}$£¬6£© | B£® | £¨-6£¬$\frac{3}{4}$£© | C£® | £¨-¡Þ£¬-6£©¡È£¨$\frac{3}{4}$£¬+¡Þ£© | D£® | £¨-¡Þ£¬-$\frac{3}{4}$£©¡È£¨6£¬+¡Þ£© |