题目内容
【题目】设函数.
(1)求函数的最小值;
(2)设,讨论函数的单调性;
(3)斜率为的直线与曲线交于、两点,
求证:
【答案】(1);(2)当时,在上是增函数;当时,在上单调递增,在上单调递减;(3)见解析.
【解析】
(1)对函数求导,求其单调区间,即可求出极值,可得最小值;(2)分别讨论和时函数的单调性;(3)将直线斜率用表示出来,将要证的不等式转化为证(),最后讨论函数()和()单调性,即可证明原题.
(1),令,得
因为当时;当时,
所以当时,
(2),
①当时,恒有,在上是增函数;
②当时,
令,得,解得;
令,得,解得,
综上,当时,在上是增函数;
当时,在上单调递增,在上单调递减
(3) .
要证,即证,等价于证,令,
则只要证,由知,故等价于证 (*).
① 设,则,故在上是增函数,
∴ 当时,,即.
② 设,则,故在上是增函数,
∴ 当时,,即.
由①②知(*)成立,得证.
练习册系列答案
相关题目
【题目】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) | 2 | 4 | 5 | 6 | 8 |
每小时生产有缺点的零件数y(件) | 30 | 40 | 60 | 50 | 70 |
(1)画散点图;
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:)