题目内容
3.通过计算高中生的性别与喜欢唱歌列联表中德数据,得到K2≈4.98,并且已知P(K2≥3.84)≈0.05,那么可以得到的结论是在犯错误率不超过0.05的情况下,认为高中生的性别与喜欢唱歌有关.分析 直接利用表格中的数据及算得K2的值,进而就可以得出结论
解答 解:K2≈4.98>3.841,在犯错误率不超过0.05的情况下,认为高中生的性别与喜欢唱歌有关.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
点评 独立性检验运用的考查,主要是套用公式计算,利用临界值进行判断,一般来说比较简单.
练习册系列答案
相关题目
11.已知A,B是抛物线y2=4x上异于顶点O的两个点,直线OA与直线OB的斜率之积为定值-4,F为抛物线的焦点,△AOF,△BOF的面积分别为S1,S2,则S12+S22的最小值为( )
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
15.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了解性别对该维度测评结果的影响,采取分层抽样的方法从高一年级抽取了45名学生进行测评,得到下面的频数统计表:
表1:男生
表2:女生
( I)从表2的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
( II)由表中统计数据填写下面2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
表1:男生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 | y |
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | x | 5 |
( II)由表中统计数据填写下面2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”?
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
8.如图,棱长为1的正四面体在平面α上方,且棱AB?平面α,则正四面体上的所有点在平面α内的射影构成图形面积的取值范围是( )
A. | [$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{3}}{4}$] | B. | [$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{3}}{4}$] | C. | [$\frac{\sqrt{3}}{4}$,$\frac{1}{2}$] | D. | [$\frac{\sqrt{6}}{6}$,$\frac{1}{2}$] |
15.甲、乙两人抢答竞赛题,甲答对的概率为$\frac{1}{5}$,乙答对的概率为$\frac{1}{4}$,则两人恰有一人答对的概率为( )
A. | $\frac{7}{20}$ | B. | $\frac{12}{20}$ | C. | $\frac{1}{20}$ | D. | $\frac{2}{20}$ |