题目内容
平行六面体ABCD=A1B1C1D1中,AB=1,AD=2,AA1=3.∠BAD=90°,∠BAA1=∠DAA1=60°
求AC1的长.

求AC1的长.

由题意,如图,作A1O⊥底面于O,作OE垂直AB于E,OF垂直AD于F,连接A1F,A1E,
由于,∠BAA1=∠DAA1=60°,故有△A1FA≌△A1EA,即A1F=A1E
从而有△A1FO≌△A1EO,即有OF=OE,由作图知,O在角DAB的角平分线上,
又底面是矩形,故角DAO=角BAO=45°,
又AB=1,AD=2,AA1=3,∠BAA1=∠DAA1=60°,
∴A1F=A1E=
,AE=AF=
,于是有AO=
,
在直角三角形A1OA中,解得A1O=
在图中作C1H垂直底面于H,作HR垂直DC延长线与R,由几何体的性质知,HR=CR=
,A1O=C1H=
连接AH,得如图的直角三角形ASH,直角三角形AHC1,由已知及上求解得AS=
,SH=
∴AC12=AH2+C1H2=AS2+SH2+C1H2=
+
+
=
=23
∴AC1=
由于,∠BAA1=∠DAA1=60°,故有△A1FA≌△A1EA,即A1F=A1E

从而有△A1FO≌△A1EO,即有OF=OE,由作图知,O在角DAB的角平分线上,
又底面是矩形,故角DAO=角BAO=45°,
又AB=1,AD=2,AA1=3,∠BAA1=∠DAA1=60°,
∴A1F=A1E=
3
| ||
2 |
3 |
2 |
3
| ||
2 |
在直角三角形A1OA中,解得A1O=
3
| ||
2 |
在图中作C1H垂直底面于H,作HR垂直DC延长线与R,由几何体的性质知,HR=CR=
3 |
2 |
3
| ||
2 |
连接AH,得如图的直角三角形ASH,直角三角形AHC1,由已知及上求解得AS=
5 |
2 |
7 |
2 |
∴AC12=AH2+C1H2=AS2+SH2+C1H2=
25 |
4 |
49 |
4 |
18 |
4 |
92 |
4 |
∴AC1=
23 |

练习册系列答案
相关题目