题目内容
(本题12分)
如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;
(2)求这个平行六面体的体积。
图1
如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;
(2)求这个平行六面体的体积。
图1
(1)略
(2)平行六面体的体积为。
(2)平行六面体的体积为。
解(1)如图2,连结A1O,则A1O⊥底面ABCD。作OM⊥AB交AB于M,作ON⊥AD交AD于N,连结A1M,A1N。由三垂线定得得A1M⊥AB,A1N⊥AD。∵∠A1AM=∠A1AN,
∴Rt△A1NA≌Rt△A1MA,∴A1M=A1N,
从而OM=ON。
∴点O在∠BAD的平分线上。
(2)∵AM=AA1cos=3×=
∴AO==。
又在Rt△AOA1中,A1O2=AA12 – AO2=9-=,
∴A1O=,平行六面体的体积为。
∴Rt△A1NA≌Rt△A1MA,∴A1M=A1N,
从而OM=ON。
∴点O在∠BAD的平分线上。
(2)∵AM=AA1cos=3×=
∴AO==。
又在Rt△AOA1中,A1O2=AA12 – AO2=9-=,
∴A1O=,平行六面体的体积为。
练习册系列答案
相关题目