题目内容
12.已知等比数列{bn}前n项和为Sn=3n-k(k∈R),公差为k的等差数列{an},满足b1=a1.(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\frac{(2{a}_{n}-1){b}_{n+2}}{2{a}_{n}{a}_{n+1}}$,求数列{cn},的前n项和Tn.
分析 (Ⅰ)由题意可得k=1,从而求数列{an},{bn}的通项公式;
(Ⅱ)化简cn=$\frac{(2{a}_{n}-1){b}_{n+2}}{2{a}_{n}{a}_{n+1}}$=$\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$,从而求Tn=($\frac{{3}^{3}}{3}$-$\frac{{3}^{2}}{2}$)+($\frac{{3}^{4}}{4}$-$\frac{{3}^{3}}{3}$)+…+($\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$)=$\frac{{3}^{n+2}}{n+2}$-$\frac{9}{2}$即可.
解答 解:(Ⅰ)∵Sn=3n-k为等比数列,
∴k=1,b1=a1=S1=31-1=2,
∴an=2+(n-1)×1=n+1,
bn=2•3n-1;
(Ⅱ)∵cn=$\frac{(2{a}_{n}-1){b}_{n+2}}{2{a}_{n}{a}_{n+1}}$=$\frac{(2n+1)2•{3}^{n+1}}{2(n+1)(n+2)}$
=$\frac{(2n+1){3}^{n+1}}{(n+1)(n+2)}$=$\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$,
∴Tn=($\frac{{3}^{3}}{3}$-$\frac{{3}^{2}}{2}$)+($\frac{{3}^{4}}{4}$-$\frac{{3}^{3}}{3}$)+…+($\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$)
=$\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{2}}{2}$
=$\frac{{3}^{n+2}}{n+2}$-$\frac{9}{2}$.
点评 本题考查了等差数列与等比数列的通项公式与前n项和公式的应用,属于中档题.
A. | 2 | B. | 0 | C. | -1 | D. | -2 |
A. | -2excosx | B. | -2exsinx | C. | 2ex(sinx-cosx) | D. | 2ex(sinx+cosx) |
A. | f(a)<0,f(b)<0 | B. | f(a)>0,f(b)>0 | C. | f(a)>0,f(b)<0 | D. | f(a)<0,f(b)>0 |
A. | y=$\frac{{x}^{3}}{{x}^{2}}$ | B. | y=a${\;}^{lo{g}_{a}x}$ | C. | y=$\sqrt{{x}^{2}}$ | D. | y=logaax |