题目内容
【题目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.
【答案】
(1)解:由方程x2+y2﹣2x﹣4y+m=0变形为(x﹣1)2+(y﹣2)2=5﹣m.∵此方程表示圆,∴5﹣m>0,解得m<5,故m的取值范围是(﹣∞,5)
(2)解:设M(x1,y1),N(x2,y2).
联立 化为5y2﹣16y+8+m=0,
∵直线与圆相交,∴△=162﹣20(8+m)>0,化为 .
∴y1+y2= , .
∵ ,∴ =0,
又x1x2=(4﹣2y1)(4﹣2y2)=16﹣8(y1+y2)+4y1y2,
∴5y1y2﹣8(y1+y2)+16=0,
∴8+m﹣ +16=0,
解得m= ,满足 ,
故m=
【解析】(1)由方程x2+y2﹣2x﹣4y+m=0配方为(x﹣1)2+(y﹣2)2=5﹣m.由于此方程表示圆,可得5﹣m>0,解出即可;(2)设M(x1 , y1),N(x2 , y2).与圆的方程联立可得△>0及根与系数关系,再利用 , =0,即可解出m.
练习册系列答案
相关题目