题目内容
【题目】用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x , x+2,10﹣x}(x≥0),则f(x)的最大值为( )
A.7
B.6
C.5
D.4
【答案】B
【解析】解:
解法一:
画出y=2x , y=x+2,y=10﹣x的图象,
观察图象可知,当0≤x≤2时,f(x)=2x ,
当2≤x≤4时,f(x)=x+2,
当x>4时,f(x)=10﹣x,
f(x)的最大值在x=4时取得为6,
故选B.
解法二:
由x+2﹣(10﹣x)=2x﹣8≥0,得x≥4.
0<x≤2时2^x﹣(x+2)≤0,2x≤2+x<10﹣x,f(x)=2x;
2<x≤4时,x+2<2x , x+2≤10﹣x,f(x)=x+2;
由2x+x﹣10=0得x1≈2.84
x>x1时2x>10﹣x,x>4时x+2>10﹣x,f(x)=10﹣x.
综上,f(x)=
∴f(x)max=f(4)=6.选B.
画出函数图象,观察最大值的位置,通过求函数值,解出最大值.
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,