题目内容
【题目】如图,三棱台的底面是正三角形,平面平面,.
(1)求证:;
(2)若,求直线与平面所成角的正弦值.
【答案】(Ⅰ)见证明;(Ⅱ)
【解析】
(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证,,两两垂直,以,,分别为,,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案。
解:(Ⅰ)取的中点为,连结.
由是三棱台得,平面平面,从而.
∵,∴,
∴四边形为平行四边形,∴.
∵,为的中点,
∴,∴.
∵平面平面,且交线为,平面,
∴平面,而平面,
∴.
(Ⅱ)连结.
由是正三角形,且为中点,则.
由(Ⅰ)知,平面,,
∴,,
∴,,两两垂直.
以,,分别为,,轴,建立如图所示的空间直角坐标系.
设,则,,,,
∴,,.
设平面的一个法向量为.
由可得,.
令,则,,∴.
设与平面所成角为,则.
练习册系列答案
相关题目