题目内容
【题目】已知函数是减函数.
(1)试确定a的值;
(2)已知数列,求证:.
【答案】(Ⅰ)(Ⅱ)见证明
【解析】
(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;
(Ⅱ)由是减函数,且可得,当时,,则,即,两边同除以得,,即,从而 ,两边取对数 ,然后再证明恒成立即可,构造函数,,通过求导证明即可。
解:(Ⅰ)的定义域为,.
由是减函数得,对任意的,都有恒成立.
设.
∵,由知,
∴当时,;当时,,
∴在上单调递增,在上单调递减,
∴在时取得最大值.
又∵,∴对任意的,恒成立,即的最大值为.
∴,解得.
(Ⅱ)由是减函数,且可得,当时,,
∴,即.
两边同除以得,,即.
从而 ,
所以 ①.
下面证;
记,.
∴ ,
∵在上单调递增,
∴在上单调递减,
而,
∴当时,恒成立,
∴在上单调递减,
即时,,
∴当时,.
∵,
∴当时,,即②.
综上①②可得,.
练习册系列答案
相关题目
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
用表中字母列举出所有可能的结果
设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.