题目内容
【题目】已知函数f(x)=|x+m|+|2x﹣1|(m∈R) (I)当m=﹣1时,求不等式f(x)≤2的解集;
(II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[ ,2]A,求实数m的取值范围.
【答案】解:( I)当m=﹣1时,f(x)=|x﹣1|+|2x﹣1|, f(x)≤2|x﹣1|+|2x﹣1|≤2,
上述不等式可化为:
或 或 ,
解得 或 或 ,
∴0≤x≤ 或 <x<1或1≤x≤ ,
∴原不等式的解集为{x|0≤x≤ }.
( II)∵f(x)≤|2x+1|的解集包含[ ,2],
∴当x∈[ ,2]时,不等式f(x)≤|2x+1|恒成立,
即|x+m|+|2x﹣1|≤|2x+1|在x∈[ ,2]上恒成立,
∴|x+m|+2x﹣1≤2x+1,
即|x+m|≤2,∴﹣2≤x+m≤2,
∴﹣x﹣2≤m≤﹣x+2在x∈[ ,2]上恒成立,
∴(﹣x﹣2)max≤m≤(﹣x+2)min ,
∴﹣ ≤m≤0,
所以实数m的取值范围是[﹣ ,0]
【解析】(Ⅰ)问题转化为|x﹣1|+|2x﹣1|≤2,通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题转化为|x+m|+|2x﹣1|≤|2x+1|在x∈[ ,2]上恒成立,根据(﹣x﹣2)max≤m≤(﹣x+2)min , 求出m的范围即可.
【考点精析】认真审题,首先需要了解绝对值不等式的解法(含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号).
【题目】近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X: ①求对商品和服务全好评的次数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)