题目内容

【题目】已知函数f(x)=(x﹣1)ex+ax2有两个零点. (Ⅰ)求a的取值范围;
(Ⅱ)设x1 , x2是f(x)的两个零点,证明x1+x2<0.

【答案】解:(Ⅰ)f'(x)=xex+2ax=x(ex+2a) (i)当a>0时,
函数f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增.
∵f(0)=﹣1<0,f(2)=e2+4a>0,
取实数b满足b<﹣2且b<lna,则f(b)>a(b﹣1)+ab2=a(b2+b﹣1)>a(4﹣2﹣1)>0,
所以f(x)有两个零点
(ii)若a=0,则f(x)=(x﹣1)ex , 故f(x)只有一个零点
(iii)若a<0,由(I)知,
,则f(x)在(0,+∞)单调递增,又当x≤0时,f(x)<0,故f(x)不存在两个零点;
,则函数在(ln(﹣2a),+∞)单调递增;在(0,ln(﹣2a))单调递减.又当x≤1时,f(x)<0,故不存在两个零点.
综上所述,a的取值范围是(0,+∞).
证明:(Ⅱ)不妨设x1<x2
由(Ⅰ)知x1∈(﹣∞,0),x2∈(0,+∞),﹣x2∈(﹣∞,0),则x1+x2<0等价于x1<﹣x2
因为函数f(x)在(﹣∞,0)单调递减,
所以x1<﹣x2等价于f(x1)>f(﹣x2),即证明f(﹣x2)<0.(8分)
,得
令g(x)=(﹣x﹣1)ex+(1﹣x)ex , x∈(0,+∞).
g'(x)=﹣x(ex+ex)<0,g(x)在(0,+∞)单调递减,又g(0)=0,所以g(x)<0,
所以f(﹣x2)<0,即原命题成立
【解析】(Ⅰ)求出f'(x)=xex+2ax=x(ex+2a),通过(i)当a>0时,判断函数的单调性,判断零点个数;(ii)若a=0,判断f(x)只有一个零点.(iii)若a<0,利用单调性判断零点个数即可.(Ⅱ)不妨设x1<x2 . 推出x1<﹣x2 . 利用函数f(x)在(﹣∞,0)单调递减,证明f(﹣x2)<0.令g(x)=(﹣x﹣1)ex+(1﹣x)ex , x∈(0,+∞).利用g'(x)=﹣x(ex+ex)<0,转化证明即可.
【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网