题目内容

【题目】由大于0的自然数构成的等差数列{an},它的最大项为26,其所有项的和为70;
(1)求数列{an}的项数n;
(2)求此数列.

【答案】【解答】设等差数列{an}的公差为d,又因为等差数列{an}的最大项为26,
(1)不妨设最大项是an
sn==70
因为{an}是自然数序列,所以n(a1+an)=140,140可以被n整除,
又an<a1+an=140/n,an=26,所以n≤5.
又a1=a1+an﹣an=140/n﹣26<an=26,所以n>=3.
d=(an﹣a1)/(n﹣1)=(52﹣140/n)/(n﹣1)
当n=4,5时
对应的d=17/3,6,故n=5
当最大项是a1时,同理可求得:n=5
故n=5.
(2)由(1)知当an=26,n=5时,an=6n﹣4,数列为2,8,14,20,26
当a1=26,n=5时,an=32﹣6n,数列为26,20,14,8,2
所以答案为2,8,14,20,26或26,20,14,8,2.
【解析】不妨设最大项是an sn==70 因为{an}是自然数序列,所以n(a1+an)=140,140可以被n整除,又an<a1+an=140/n,an=26,所以n<=5.又a1=a1+an﹣an=140/n﹣26<an=26,所以n>=3. d=(an﹣a1)/(n﹣1)=(52﹣140/n)/(n﹣1)当n=4,5时对应的d=17/3,6.故n=5,an=6n﹣4.当最大项是a1时,同理可求得:n=5,an=32﹣6n,即可求出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网