ÌâÄ¿ÄÚÈÝ
2£®°ÑʵÊýa£¬b£¬c£¬dÅųÉ$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$µÄÐÎʽ£¬³ÆΪ¶þÐжþÁоØÕ󣮶ÔÓÚµãP£¨x£¬y£©£¬¶¨Òå¾ØÕóµÄÒ»ÖÖÔËËã$£¨{x£¬y}£©£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©=£¨{ax+by£¬cx+dy}£©$£¬²¢³Æ£¨ax+by£¬cx+dy£©ÎªµãPÔÚ¾ØÕó$£¨{\begin{array}{l}a&c\\ b&d\end{array}}£©$×÷ÓÃϵĵ㣮¸ø³öÏÂÁÐÃüÌ⣺¢ÙµãP£¨3£¬4£©ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$×÷ÓÃϵĵãΪ£¨3£¬10£©£»
¢ÚÇúÏßy=x2ÉϵĵãÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϽ«Âú×ã·½³Ìy=-x2£»
¢Û·½³Ì×é$\left\{\begin{array}{l}{{a}_{11}x+{a}_{12}y={b}_{1}}\\{{a}_{21}x+{a}_{22}y={b}_{2}}\end{array}\right.$¿É±íʾ³É¾ØÕóÔËË㣨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨b1£¬b2£©£»
¢ÜÈôÇúÏßx2+4xy+2y2=1ÔÚ$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$×÷ÓÃϱ任³ÉÇúÏßx2-2y2=1£¬Ôòa+b=2£®
ÆäÖÐÕæÃüÌâµÄÐòºÅΪ¢Ù¢Ü£®£¨ÌîÉÏËùÓÐÕæÃüÌâµÄÐòºÅ£©
·ÖÎö ¢Ù£¨3£¬4£©$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$=£¨3¡Á1+4¡Á0£¬3¡Á2+4¡Á1£©=£¨3£¬10£©£¬´Ó¶øÅжϣ»
¢ÚÉèÇúÏßy=x2ÉϵĵãΪ£¨x1£¬y1£©£¬ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϵĵãΪ£¨x£¬y£©£»Ôò£¨x1£¬y1£©$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$=£¨x1£¬y1£©=£¨x£¬y£©£»´Ó¶øÅжϣ»
¢Û£¨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨xa11+ya21£¬xa12+ya22£©£¬´Ó¶øÅжϣ»
¢Üx2+4xy+2y2=1¿É»¯Îª£¨x+2y£©2-2y2=1£»´Ó¶ø¿ÉµÃ£¨x£¬y£©$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$=£¨x+2y£¬y£©£»´Ó¶øÇóa£¬b£»
½â´ð ½â£º¢Ù¡ß£¨3£¬4£©$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$=£¨3¡Á1+4¡Á0£¬3¡Á2+4¡Á1£©=£¨3£¬10£©£»
¡àµãP£¨3£¬4£©ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{2}\\{0}&{1}\end{array}£©$×÷ÓÃϵĵãΪ£¨3£¬10£©ÊÇÕæÃüÌ⣻
¢ÚÉèÇúÏßy=x2ÉϵĵãΪ£¨x1£¬y1£©£¬ÔÚ¾ØÕó$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$µÄ×÷ÓÃϵĵãΪ£¨x£¬y£©£»
Ôò£¨x1£¬y1£©$£¨\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}£©$=£¨x1£¬y1£©=£¨x£¬y£©£»
¹ÊÂú×ã·½³Ìy=x2£¬
¹Ê¢ÚÊǼÙÃüÌ⣻
¢Û£¨x£¬y£©$£¨\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}£©$=£¨xa11+ya21£¬xa12+ya22£©£»
¹Ê¢ÛÊǼÙÃüÌ⣻
¢Üx2+4xy+2y2=1¿É»¯Îª£¨x+2y£©2-2y2=1£»
Ôò£¨x£¬y£©$£¨\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}£©$=£¨x+2y£¬y£©£»
¹Êb=2£¬a=0£»
¼´a+b=2£»
¹Ê¢ÜÊÇÕæÃüÌ⣻
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
µãÆÀ ±¾Ì⿼²éÁ˾ØÕóÓë±ä»»µÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
A£® | $\frac{5}{2}$ | B£® | 4 | C£® | $\frac{9}{2}$ | D£® | 9 |
A£® | $\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=-3}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=-3}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=3}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=3}\end{array}\right.$ |