ÌâÄ¿ÄÚÈÝ
12£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎSABCÖУ¬¡ÏB=¡ÏC=$\frac{¦Ð}{2}$£¬DΪ±ßSCÉϵĵ㣬ÇÒAD¡ÍSC£¬ÏÖ½«¡÷SADÑØADÕÛÆðµ½´ïPADµÄλÖã¨ÕÛÆðºóµãS¼ÇΪP£©£¬²¢Ê¹µÃPA¡ÍAB£®£¨1£©ÇóÖ¤£ºPD¡ÍƽÃæABCD£»
£¨2£©ÒÑÖªPD=AD£¬PD+AD+DC=6£¬µ±Ï߶ÎPBÈ¡µÃ×îСֵʱ£¬Çë½â´ðÒÔÏÂÎÊÌ⣺
¢ÙÉèµãEÂú×ã$\overrightarrow{BE}$=¦Ë$\overrightarrow{BP}$£¨0¡Ü¦Ë¡Ü1£©£¬ÔòÊÇ·ñ´æÔڦˣ¬Ê¹µÃƽÃæEACÓëƽÃæPDCËù³ÉµÄÈñ½ÇÊÇ$\frac{¦Ð}{3}$£¿Èô´æÔÚ£¬Çó³ö¦Ë£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢ÚÉèGÊÇADµÄÖе㣬ÔòÔÚƽÃæPBCÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹µÃFG¡ÍƽÃæPBC£¿Èô´æÔÚ£¬È·¶¨µãFµÄλÖã¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÏßÃæ´¹Ö±µÄÅж¨¶¨Àí¼´¿ÉÖ¤Ã÷PD¡ÍƽÃæABCD£»
£¨2£©½¨Á¢¿Õ¼ä×ø±êϵ£¬Çó³öƽÃæµÄ·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿·¨½øÐÐÇó½â¼´¿É£®
½â´ð Ö¤Ã÷£º£¨1£©¡ßPA¡ÍAB£¬AB¡ÍAD£¬PA¡ÍAD=A£¬
¡àAB¡ÍƽÃæPAD£¬
¡ßPD?ƽÃæPAD£¬
¡àAB¡ÍPD£¬
¡ßPD¡ÍAD£¬AD¡ÉAB=A£¬
¡àPD¡ÍƽÃæABCD
£¨2£©ÉèPD=x£¬ÔòAD=x£¬DC=6-2x£¬
¡àPB2=x2+x2+£¨6-2x£©2=6£¨x-2£©2+12£¬µ±ÇÒ½öµ±x=2ʱ£¬PB2È¡µÃ×îСֵ£¬
¼´PBÈ¡µÃ×îСֵ£¬
ÒÔÒÔDΪԵ㣬DA£¬DC£¬DP·Ö±ðΪxÖᣬyÖᣬzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵD-xyz£¬
ÉèPD=AD=2£¬
ÔòA£¨2£¬0£¬0£©£¬B£¨2£¬2£¬0£©£¬C£¨0£¬2£¬0£©£¬P£¨0£¬0£¬2£©£¬
$\overrightarrow{CB}$=£¨2£¬0£¬0£©£¬$\overrightarrow{BP}$=£¨-2£¬-2£¬2£©£¬
$\overrightarrow{CA}$=£¨2£¬-2£¬0£©£¬
¢Ù´æÔÚ£¬ÊÂʵÉÏ£¬$\overrightarrow{CE}=\overrightarrow{CB}+\overrightarrow{BE}$=$\overrightarrow{CB}+¦Ë\overrightarrow{BP}$=£¨2-2¦Ë£¬-2¦Ë£¬2¦Ë£©£¬
Éè$\overrightarrow{n}$=£¨x£¬y£¬z£©ÊÇƽÃæACEµÄÒ»¸ö·¨ÏòÁ¿£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=0}\\{\overrightarrow{n}•\overrightarrow{CA}=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{£¨2-2¦Ë£©x-2¦Ëy+2¦Ëz=0}\\{2x-2y=0}\end{array}\right.$£¬
È¡$\overrightarrow{n}$=£¨¦Ë£¬¦Ë£¬2¦Ë-1£©£¬
Ôò$\overrightarrow{m}$=£¨1£¬0£¬0£©ÊÇƽÃæPCDµÄÒ»¸ö·¨ÏòÁ¿£¬
Ôòcos$\frac{¦Ð}{3}$=|cos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$|=$\frac{|¦Ë|}{\sqrt{2{¦Ë}^{2}+£¨2¦Ë-1£©^{2}}}$=$\frac{1}{2}$£¬
¡ß00£¼¦Ë£¼1£¬¡à¦Ë=1-$\frac{\sqrt{2}}{2}$£¬
¢ÚÉè´æÔÚµãF·ûºÏÌâÒ⣬¶øµãFÔÚƽÃæPBCÉÏ£¬ÓÚÊÇ´æÔÚm£¬nʹ$\overrightarrow{CF}=m\overrightarrow{CB}+n\overrightarrow{CP}$£¬
$\overrightarrow{GF}=\overrightarrow{GC}+\overrightarrow{CF}=\overrightarrow{GC}$$+m\overrightarrow{CB}+n\overrightarrow{CP}$=£¨-1+2m£¬2-2n£¬2n£©£¬
×¢Òâµ½µÈÑüÖ±½ÇÈý½ÇÐÎPDC£¬Ð±±ßÉϵÄÖ±Ïß´¹Ö±ÓÚƽÃæPBC£¬
Ôò$\overrightarrow{{n}_{1}}$=£¨0£¬0£¬1£©ÊÇƽÃæPBCµÄÒ»¸ö·¨ÏòÁ¿£¬
Ôò$\overrightarrow{{n}_{1}}$¡Î$\overrightarrow{CF}$£¬¼´$\left\{\begin{array}{l}{-1+2m=0}\\{2-2n=2n}\end{array}\right.$£¬
½âµÃm=n=$\frac{1}{2}$£¬´ËʱµãF£¨1£¬1£¬1£¬£©£¬
¹ÊÔÚƽÃæPBCÉÏÊÇ´æÔÚPBµÄÖеãF£¬Ê¹µÃFG¡ÍƽÃæPBC£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏßÃæ´¹Ö±µÄ¶¨ÒåºÍÅж¨¶¨ÀíµÄÓ¦Óã¬Æ½ÃæÏòÁ¿µÄÔËË㣬·¨ÏòÁ¿µÄ¶¨ÒåµÈ֪ʶ£®¿¼²éÁËѧÉú¶Ô»ù´¡ÖªÊ¶µÄ×ÛºÏÔËÓã®
x | $\sqrt{2}$ | 2 | 4 |
y | $\frac{\sqrt{2}}{2}$ | 0 | 4 |
£¨2£©ÒÑÖªÖ±Ïßl£ºx=my+1ÓëÍÖÔ²C2ÏཻÓÚ²»Í¬Á½µãM£¬N£¬ÇÒÂú×ã$\overrightarrow{OM}¡Í\overrightarrow{ON}$£¬Çó²ÎÊýmµÄÖµ£®
A£® | 10 | B£® | 11 | C£® | 12 | D£® | 13 |