ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}_{1}^2}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1£¨a1£¾0£¬b2£¾0£©ÓëË«ÇúÏßC2£º£º$\frac{{x}^{2}}{{a}_{2}^2}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1£¨a1£¾0£¬b2£¾0£©ÓÐÏàͬµÄ½¹µãF1£¬F2£¬µãPÊÇÁ½ÇúÏßµÄÒ»¸ö¹«¹²µã£¬e1£¬e2ÓÖ·Ö±ðÊÇÁ½ÇúÏßµÄÀëÐÄÂÊ£¬ÈôPF1¡ÍPF2£¬Ôò4e12+e22µÄ×îСֵ£¨¡¡¡¡£©A£® | $\frac{5}{2}$ | B£® | 4 | C£® | $\frac{9}{2}$ | D£® | 9 |
·ÖÎö ÌâÒâÉè½¹¾àΪ2c£¬ÍÖÔ²³¤Ö᳤Ϊ2a1£¬Ë«ÇúÏßʵÖáΪ2a2£¬ÁîPÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬ÓÉÒÑÖªÌõ¼þ½áºÏË«ÇúÏߺÍÍÖÔ²µÄ¶¨ÒåÍƳöa12+a22=2c2£¬ÓÉ´ËÄÜÇó³ö4e12+e22µÄ×îСֵ£®
½â´ð ½â£ºÓÉÌâÒâÉè½¹¾àΪ2c£¬ÍÖÔ²³¤Ö᳤Ϊ2a1£¬Ë«ÇúÏßʵÖáΪ2a2£¬
ÁîPÔÚË«ÇúÏßµÄÓÒÖ§ÉÏ£¬
ÓÉË«ÇúÏߵĶ¨Òå|PF1|-|PF2|=2a2£¬¢Ù
ÓÉÍÖÔ²¶¨Òå|PF1|+|PF2|=2a1£¬¢Ú
ÓÖ¡ßPF1¡ÍPF2£¬
¡à|PF1|2+|PF2|2=4c2£¬¢Û
¢Ù2+¢Ú2£¬µÃ|PF1|2+|PF2|2=2a12+2a22£¬¢Ü
½«¢Ü´úÈë¢Û£¬µÃa12+a22=2c2£¬
¡à4e12+e22=$\frac{4{c}^{2}}{{{a}_{1}}^{2}}+\frac{{c}^{2}}{{{a}_{2}}^{2}}$=$\frac{5}{2}$+$\frac{2{{a}_{2}}^{2}}{{{a}_{1}}^{2}}$+$\frac{{{a}_{1}}^{2}}{2{{a}_{2}}^{2}}$¡Ý$\frac{5}{2}$+2=$\frac{9}{2}$£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²é4e12+e22µÄ×îСֵµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÊìÁ·ÕÆÎÕË«ÇúÏß¡¢ÍÖÔ²µÄ¶¨Ò壬עÒâ¾ùÖµ¶¨ÀíµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®ÏÂÁзûºÅÓïÑÔ±íÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | A¡Êl | B£® | A?¦Á | C£® | A?l | D£® | l¡Ê¦Á |