题目内容
(满分14分)已知一动圆M,恒过点F(1,0),且总与直线
相切,
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)在曲线C上是否存在异于原点的
两点,当
时,直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550291422.png)
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)在曲线C上是否存在异于原点的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550306884.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550337563.png)
(1)
;(2)无论
为何值,直线AB过定点(4,0) 。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550353525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550384458.png)
(1)因为动圆M,过点F
且与直线
相切, 所以圆心M到F的距离等于到直线
的距离.根据抛物线的定义可以确定点M的轨迹是抛物线,易求其方程.
(II)本小题属于存在性命题,先假设存在A,B在
上, 直线AB的方程:
,即AB的方程为
,然后根据
,∴AB的方程为
,从而可确定其所过定点.
解:(1) 因为动圆M,过点F
且与直线
相切,
所以圆心M到F的距离等于到直线
的距离. …………2分
所以,点M的轨迹是以F为焦点,
为准线的抛物线,且
,
, ……4分
所以所求的轨迹方程为
……………6分
(2) 假设存在A,B在
上, …………7分
∴直线AB的方程:
, …………9分
即AB的方程为:
, …………10分
即
…………11分
又∵
∴AB的方程为
,…………12分
令
,得
,所以,无论
为何值,直线AB过定点(4,0) …………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550400432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550431422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550493280.png)
(II)本小题属于存在性命题,先假设存在A,B在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550353525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550540919.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550556949.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550337563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550603962.png)
解:(1) 因为动圆M,过点F
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550400432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550431422.png)
所以圆心M到F的距离等于到直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550493280.png)
所以,点M的轨迹是以F为焦点,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550493280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550790487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550899421.png)
所以所求的轨迹方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550353525.png)
(2) 假设存在A,B在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550353525.png)
∴直线AB的方程:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550540919.png)
即AB的方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305510861024.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550556949.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550337563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550603962.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230551164391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230551195368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230550384458.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目