题目内容
(1)已知函数f(x)=
x
-ax+(a-1)
,
。讨论函数
的单调性;
(2).已知函数f (x)=lnx,g(x)=ex.设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937127338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937205242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937220344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937408370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937423447.png)
(2).已知函数f (x)=lnx,g(x)=ex.设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。
(1)当
时,
递增
当
时,在(0,1),
递增 在(1,a-1)递减
当
时,在(0,a-1)递增,
递增,在(a-1,1)递减
(2)在区间(1
)一定存在唯一的
,使直线l与曲线
也相切.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937439387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937470533.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937673416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937688598.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937735462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937751509.png)
(2)在区间(1
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937766335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937798324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937876550.png)
第一问中,利用f(x)=
x
-ax+(a-1)
,
求解导数,然后对于参数a分情况讨论可知函数的单调性。
第二问中,利用导数的几何意义,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938078616.png)
切线l的方程为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938125761.png)
设切线l与曲线
相切于![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938156645.png)
切线l的方程又为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938297772.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149384221186.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938453732.png)
因为
与![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938671169.png)
的图象 在(1,
)
有且只有一个交点
在区间(1
)一定存在唯一的
,使直线l与曲线
也相切
解:(1)当
时,
递增
当
时,在(0,1),
递增 在(1,a-1)递减
当
时,在(0,a-1)递增,
递增,在(a-1,1)递减………7分
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938078616.png)
切线l的方程为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938125761.png)
设切线l与曲线
相切于![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938156645.png)
切线l的方程又为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938297772.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149384221186.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938453732.png)
………7分
与![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938671169.png)
的图象 在(1,
)
有且只有一个交点
在区间(1
)一定存在唯一的
,使直线l与曲线
也相切…………………15分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937127338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937205242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937220344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937408370.png)
第二问中,利用导数的几何意义,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937985659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938078616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938125761.png)
设切线l与曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937876550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938156645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938281567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938297772.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149384221186.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938453732.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938484480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938671169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938687555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937766335.png)
有且只有一个交点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937766335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937798324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937876550.png)
解:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937439387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937470533.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937673416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937688598.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937735462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937751509.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937985659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938078616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938125761.png)
设切线l与曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937876550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938156645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938281567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938297772.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232149384221186.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938453732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214939404666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938484480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938671169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938687555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937766335.png)
有且只有一个交点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214938094195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937766335.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937798324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214937876550.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目