题目内容
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当a≠时,求函数f(x)的单调区间与极值.
(1)3e(2) 所以f(x)在(-∞,a-2),(-2a,+∞)内是增函数,在(a-2,-2a)内是减函数.函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2.函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a.
【解析】(1)当a=0时,f(x)=x2ex,f′(x)=(x2+2x)ex,故f′(1)=3e.所以曲线y=f(x)在点(1,f(1))处的切线的斜率为3e.
(2)f′(x)=[x2+(a+2)x-2a2+4a]ex.
令f′(x)=0,解得x=-2a或x=a-2.由a≠知,-2a≠a-2.
以下分两种情况讨论.
①若a>,则-2a<a-2.当x变化时,f′(x),f(x)的变化情况如下表:
x | (-∞,-2a) | -2a | (-2a,a-2) | a-2 | (a-2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 极大值 | 极小值 |
所以f(x)在(-∞,-2a),(a-2,+∞)内是增函数,在(-2a,a-2)内是减函数.
函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3ae-2a.
函数f(x)在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)ea-2.
②若a<,则-2a>a-2.当x变化时,f′(x),f(x)的变化情况如下表:
x | (-∞,a-2) | a-2 | (a-2,-2a) | -2a | (-2a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 极大值 | 极小值 |
所以f(x)在(-∞,a-2),(-2a,+∞)内是增函数,在(a-2,-2a)内是减函数.
函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2.
函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a